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Abstract
We combine hydrostatic equilibrium with Donnan equilibrium to identify three
different regimes of sedimentation equilibrium in suspensions of highly charged
colloids. In the low-density regime the familiar exponential (barometric)
distribution is recovered, in an intermediate density regime the profile is found
to be linear with height, and in the high-density regime it is exponential again
but with a gravitational length that is increased by a factor Z + 1, where Z is
the colloidal charge number. The nonbarometric distributions are explained
in terms of macroscopic electric fields, generated by macroscopic charge
separation as calculated by Poisson–Boltzmann theory.

1. Introduction

Fluids in the Earth’s gravity field face a competition between minimal energy (all particles
at the bottom) and maximal entropy (a homogeneous distribution of particles). The balance
between these two competing tendencies is governed by hydrostatic equilibrium, which on a
macroscopic scale and for a one-component fluid can be cast in the form [1]

dP(ρ(x))

dx
= −mgρ(x), (1)

where P(ρ) is the pressure of the bulk fluid at number density ρ, x is the height above the
surface, m is the mass of the particles, and g the gravitational acceleration. For a given bulk
equation of state, P(ρ), equation (1) is a first-order differential equation for the equilibrium
density profile ρ(x), and the constant of integration is determined by the total number of
particles in the system. Conversely, equation (1) can be used to obtain the equation of state
by integrating a known equilibrium density profile ρ(x) [2]. In this paper we take the former
approach. For a sufficiently dilute fluid, for which the ideal-gas equation of state P = kTρ
holds (with kT the thermal energy, assumed uniform in space here), equation (1) is easily
solved and yields the familiar barometric height distribution

ρ(x) = ρ0 exp(−x/L), L = kT

mg
, (2)
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where ρ0 is a normalising constant determined by the total amount of gas in the system. The
so-called gravitational length L sets the length scale of the spatial inhomogeneity of the gas,
and is of the order of kilometres for atomic gases at atmospheric temperatures.

In this contribution we use equation (1) to describe sedimentation equilibrium in colloidal
suspensions, even though such systems are not one-component fluids—they consist at least
of a molecular solvent and a colloidal species. This is possible provided one regards P(ρ)
as the osmotic equation of state, and m as the buoyant mass of the colloidal particles [3–5].
The focus of this paper is on suspensions of charged colloids, where the constraint of global
charge neutrality is responsible for a rather richly structured osmotic pressure P(ρ), even on
the (almost) ideal-gas level as first described by Donnan. The tendency to maintain local
charge neutrality, and the possibility to violate it, turn out to seriously affect the competition
between potential energy and entropy, which usually determine sedimentation equilibrium.

This paper is organised as follows. In section 2 we will first present a rederivation of the
Donnan expression for P(ρ), which we combine with the hydrostatic equilibrium condition (1)
in section 3. It will then turn out to be necessary to include the Maxwell stress to the force
balance of equation (1), which we discuss in section 4. In section 5 we end with a discussion
on the experimental realizability of the phenomenon discussed, and with some conclusions.

2. The homogeneous bulk system

Consider a bulk system of negatively charged colloidal spheres, each carrying a homogeneous
surface charge −Ze where e is the proton charge. The number density of colloids is ρ.
The colloids are suspended in a structureless incompressible molecular medium, together
with monovalent cations and anions at concentrations c+ and c−, respectively. Global charge
neutrality dictates that

Zρ = c+ − c−. (3)

We imagine this suspension in osmotic (Donnan) equilibrium with a (neutral) reservoir of
the cations and anions at a total concentration 2cs. Within the ideal-gas approximation the
chemical potential of the cations and anions is therefore given by

µ± = kT log(cs�
3
±), (4)

where �± denotes the (irrelevant) thermal wavelength of the ions. Here the average
(macroscopic) electrostatic potential is gauged to be vanishing in the reservoir. This average
potential, however, is nonzero (and negative) in the suspension because of the presence of the
negative colloids. Denoting this so-called Donnan potential by ψ , we find for the chemical
potential of the ions in the suspension (again assuming ideal-gas behaviour)

µ± = kT log(c±�3
±)± eψ. (5)

Because of the Donnan equilibrium the chemical potentials of the ions in the reservoir and the
suspension are equal, and it follows directly from equations (4) and (5) that

c± = cs exp(∓φ), (6)

where we have introduced the dimensionless Donnan potential

φ = eψ

kT
. (7)

The charge neutrality condition, equation (3), imposes φ to satisfy

− sinh φ = Zρ

2cs
≡ y, (8)
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Figure 1. Double logarithmic plot of the dimensionless osmotic pressure P∗ of equation (9) (thick
curve) as a function of dimensionless colloid density y defined in equation (8), for Z = 1000.
The three thin curves represent the three regimes identified in equation (10), and show two linear
regimes (y < 1/Z and y > 1) separated by a quadratic regime 1/Z < y < 1.

which implies thatφ = log(−y+
√

1 + y2) is uniquely determined by the dimensionless colloid
density y. Insertion of this result into equation (6) yields c± explicitly as a function of y, i.e. as
a function of Z , ρ, and cs. Within the ideal-gas approximation the osmotic equation of state
follows as P/kT = ρ + c+ + c− − 2cs [6], the dimensionless form of which is rewritten as

P∗ = P Z

2cskT
= y + Z(cosh φ − 1)

= y + Z
(√

1 + y2 − 1
)

(9)

=




y, y � Z−1;
Z y2/2, Z−1 � y � 1;

(Z + 1)y, y � 1.

(10)

Of course these three density regimes are only distinct for highly charged colloids, for which
Z � 1. We illustrate the existence of these three density regimes in figure 1 for Z = 1000,
where the dimensionless osmotic pressure P∗ is plotted (on a log–log scale) as a function of
the dimensionless colloid density y. The three regimes are separated by the dashed vertical
lines at y = 1/Z and 1, where the crossovers take place. The low-density regime y < 1/Z (or
equivalently the high-salt regime), shows a linear equation of state, P = kTρ, i.e. the Donnan
equilibrium reduces to the well-known Van’t Hoff limit. Also the high-density (or low-salt)
regime y > 1 exhibits a linear equation of state, P = (Z + 1)kTρ. This form suggests that not
only the colloids but also the Z counterions per colloid act as independent ideal ‘kinetic’ units.
The intermediate regime, 1/Z < y < 1, is characterised by a purely quadratic equation of
state, P = kT Z 2ρ2/4cs, i.e. not a sum of a linear and a quadratic term as in the lowest-order
virial expansion.
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3. Sedimentation equilibrium of charged colloids

We can now combine expression (9) for the osmotic pressure of a bulk suspension of charged
colloids with the condition of hydrostatic equilibrium given in equation (1). It turns out that
analytic results can be found for all three regimes given in equation (10). Fixing cs and Z ,
introducing the dimensionless density profile y(x) = Zρ(x)/2cs, and using the relationship
dP/dρ = kT dP∗/dy, we obtain

y(x) =




y(1)0 exp

(
− x

L

)
, y < Z−1;

y(2)0 − x

Z L
, Z−1 < y < 1;

y(3)0 exp

(
− x

(Z + 1)L

)
, y > 1.

(11)

Here L is defined in equation (2), and y(i)0 represents the integration constant in each of the three
regimes, with i = 1, 2, 3. Of course two of these can be fixed by imposing continuity at the two
crossovers at x = x1 and x2, defined such that y(x1) = 1 and y(x2) = 1/Z . Straightforward
analysis yields that the height of the linear regime is given by x2 − x1 = (Z − 1)L, and that
one can write

y(x) =




1

Z
exp

(
− x − x2

L

)
, x > x2;

1 − x − x1

Z L
, x1 < x < x2;

exp

(
− x − x1

(Z + 1)L

)
, x < x1.

(12)

This function is plotted in figure 2, for the case Z = 1000 and y(0) = exp(1), i.e. x1 = (Z +1)L
and x2 = 2Z L. The dashed curves indicate y = 1 and 1/Z , where the crossovers take
place. Note that the derivative y ′(x) = dy(x)/dx of the functional form for y(x) of
equation (12) is continuous at x = x2, and almost continuous at x1 for large Z , since
L(y ′(x+

1 ) − y ′(x−
1 )) = O(1/Z). The important observation to make now is that despite

the fact that we work on the ideal-gas level (but with the Donnan potential combined with
global charge-neutrality built in to account for the Coulombic interactions), we find that the
expected barometric distribution (2) only holds in the low-density (high-salt regime) y < 1/Z ;
the density profile is linear in the height x in the regime where 1/Z < y < 1, and exponential
with a decay length equal to (Z + 1)L in the regime y > 1. In other words, the colloidal
density is, in the latter two regimes, much more homogeneous than expected on the basis of
the barometric law: the colloids are lifted upwards.

The mechanism that is responsible for this lift effect can readily be identified by
combining equations (8) and (12), together with the limits sinh φ � φ for |φ| � 1 and
sinh φ � − exp(−φ)/2 for φ � −1. This yields

φ(x) =




− 1

Z
exp

(
− x − x2

L

)
, x > x2;

−1 +
x − x1

Z L
, x1 < x < x2;

− log 2 +
x − x1

(Z + 1)L
, x < x1.

(13)

In words, in the nonbarometric regime x < x2 the local Donnan potential ψ(x) = kTφ(x)/e
is linear in x , implying the existence of a homogeneous electric field E = −dψ/dx pointing
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Figure 2. Universal dimensionless sedimentation profile for Z = 1000 showing the three
regimes (i) an exponential regime with decay length (Z + 1)L for y > 1 (at x < Z L), (ii) a
linear regime with slope 1/Z L for 1/Z < y < 1 (at Z L < x < 2Z L), and (iii) an exponential
(barometric) regime with decay length L for y < 1/Z (at x > 2Z L). The inset shows the same
function on a linear scale in order to reveal the linear part more clearly.

downwards, i.e. pushing up the (negative) colloids. In the regime of the linear profile,
x1 < x < x2, this field is given by E = −mg/Ze, i.e. the electric force on the colloids
−ZeE = mg cancels the gravitational force −mg exactly. In the regime x < x1 the electric
force equals mgZ/(Z + 1), and here the balance of electrostatic and gravitational force on a
colloid leads to a net downward force −mg/(Z + 1), i.e. as if the colloidal mass is reduced by
a factor Z + 1. The latter observation was also made in [7–10], on the basis of the Poisson–
Boltzmann equation and/or Donnan equilibrium. Note that φ(x) given in equation (13) is
not continuous at x = x1. This is unphysical and reflects the asymptotic character of the
three regimes; the full (numerically obtainable) solution is of course smooth. The magnitude
of the discontinuity of φ(x1) is a consequence of our choice to impose a continuous y(x) in
equation (12).

4. Charge separation

The existence of a macroscopic electric field in a suspension must be caused by a separation
of charges, i.e. by a local violation of charge neutrality (of course charge neutrality must
be satisfied globally). The analysis of section 3 is, however, based on the combination
of equations (1) and (10), i.e. on local charge neutrality as the bulk equation of state (10)
holds for a charge neutral system. In other words, merely combining the bulk equation
of state with hydrostatic equilibrium leads to an internal inconsistency. This inconsistency
can be repaired if one includes the so-called Maxwell stress to the force balance [11].
One recalls that the mn-component of the Maxwell stress tensor τ is given by τmn =
(ε/4π)[−Em En − Bm Bn + 1

2 δmn(E2 + B2)], and that the integral of τ over a closed surface
equals the force on the enclosed volume [11]. Here ε is the dielectric constant of the suspending
medium, E and B are the electric and magnetic field,respectively, and δmn is the Kroneker delta.
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In the sedimentation geometry of present interest only τxx = −(ε/8π)E2
x is nonvanishing, and

hence the total force 	 per unit area (due to interactions in the suspension) can be written as
	 = P + τxx , which we rewrite with Ex = −ψ ′(x) and the equations (9) and (7) as

β	(ρ(x), φ(x)) = ρ(x) + 2cs(cosh φ(x)− 1)− 1

8πλB
(φ′(x))2. (14)

Here λB = e2/εkT is the Bjerrum length. The force balance, or hydrostatic equilibrium, in
the Earth’s gravity field is now given by equation (1) but with P replaced by 	. This yields

dβ 	(ρ(x), φ(x))

dx
= ρ ′(x)− Zρ(x)φ′(x) = −ρ(x)

L
, (15)

where the gravitational length L is defined in equation (2), and where we used the Poisson–
Boltzmann equation

φ′′(x) = κ2 sinh φ(x) + 4πλB Zρ(x), (16)

with κ2 = 8πλBcs. A straightforward integration of equation (15) yields the Boltzmann
distribution

ρ(x) = ρ0 exp(−x/L + Zφ(x)), (17)

where ρ0 is a constant of integration determined by the total amount of colloidal material
in the sample. The form (17) for the colloidal density profile is a direct generalisation
of the barometric distribution (2) to include electrostatic interactions—it also follows from
minimising a mean-field density functional [9]. The main difference between (2) and (17) is
that the former is an explicit form for the density profile, whereas the latter is a single equation
for the two unknown profiles ρ(x) and φ(x). The second relation between them is provided by
the Poisson–Boltzmann equation (16). The equilibrium profiles ρ(x) and φ(x) can therefore
be solved numerically from the two coupled nonlinear equations (16) and (17), subject to
appropriate boundary conditions. The symbols in figure 3 represent, for several reservoir salt
concentrations cs, the resulting dimensionless density profiles η(x) = (π/6)ρ(x)σ 3, i.e. the
packing fraction, of a suspension of charged spheres with Z = 200, diameter σ = 150 nm,
λB = 2.3 nm (ethanol at room temperature), and gravitational length L = 2 mm. The
suspension is confined (by the solvent volume) to 0 < x < H with H = 20 cm, with
electrostatic boundary conditions such that ψ ′(0) = ψ ′(H ) = 0, and with the normalisation
given by the total packing fraction (1/H )

∫ H
0 dx η(x) = 0.0005 in all cases. The curves in

figure 3 represent, for the same parameters, the packing fraction profiles that result from a
numerical integration of equation (1) with P(ρ) the Donnan bulk pressure of equation (9),
i.e. the inconsistent approximation that φ′(x) ≡ 0 is made (but here the full expression for
P is used instead of the three asymptotic regimes given in equation (10)). The agreement
between the Poisson–Boltzmann (symbols) and the Donnan-based profiles (lines) is remarkably
good, but not exact of course. Note that the former follow from a second-order system of
differential equations, and the latter from a first-order differential equation, i.e. the latter
requires substantially less numerical effort to obtain. The (small) difference between the two
density profiles can be seen more clearly in figure 4, to be discussed later.

In figure 3 the parameters Z , σ , λB, L, as well as the average packing fraction,
correspond to a good approximation to the supernatant phases observed in [10]. At the
highest salt concentration, cs = 10−3 M, the profile is indistinguishable from the barometric
distribution (2), indicating that local charge neutrality applies. At lower salt concentrations,
cs � 10−5 M, (i.e. at larger y) a linear part appears in the profiles, of which the slope decreases
with cs as given by equation (12). The linear part does not span the whole sample for
cs = 10−5 M and 10−6 M, where a crossover takes place to the barometric regime at that
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Figure 3. Predicted packing fraction profiles in a sample of height H = 20 cm with an average
packing fraction 0.0005 for several salt concentrations cs. The symbols represent the Poisson–
Boltzmann-based profiles, and the lines the Donnan-based ones. The colloidal charge is Z = 200,
the Bjerrum length λB = 2.3 nm is that for ethanol at room temperature, the gravitational length is
L = 2 mm, and the colloidal diameter isσ = 150 nm. These parameters are close to the experiments
of [10], where probably cs < 10−7 M. The curves reveal that the density profile becomes more
homogeneous as the salt concentration cs is lowered, and that the inconsistent Donnan-based profiles
are a good approximation of the full (consistent) Poisson–Boltzmann results.

height x where y(x) = 1/Z . For cs = 10−7 M, which we consider an upper bound for the
experimental salt concentration in [10], the linear regime spans the whole sample. It is tempting
to explain the observed strong scattering, which signifies the presence of a finite concentration
of colloids, in the supernatants of [10] by the present theory. This remains, however, to be
confirmed, e.g. by a direct measurement of an electric field in these systems [12].

Whether or not the linear regime spans the whole sample has a profound effect on the
total charge-density −Zρ(x)− 2cs sinh φ(x), which is represented (in arbitrary units) by the
thick curves in figure 4 for (a) cs = 10−6 M and (b) cs = 10−7 M. Figure 4 also shows the
corresponding colloid density profiles (symbols for Poisson–Boltzmann results and thin line
for Donnan-based results). Figure 4 reveals that the net local charge is either strongly localized
in the very edges of the system x � 0, H (in layers with a thickness of the order of the Debye-
length κ−1, see the inset in (b)), or rather broadly distributed below the crossover y = 1/Z
(inset of (a)), where the linear and the barometric regime meet. In both of the cases (a) and (b)
there is a condenser effect that pushes the colloidal particles upward. This effect was also
described in [7–9].

In the case of the strongly localized charge distribution at the bottom of the container (and
at the top in the case that the linear regime spans the whole sample) it is of interest to consider
the magnitude of the corresponding surface charge density. At the end of section 3 we found
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Figure 4. Colloidal density (symbols and thin curves as in figure 3) and total charge-density (thick
curves), in arbitrary units, for the same parameters as in figure 3, with (a) cs = 10−6 M and (b)
cs = 10−7 M. In (a) the net positive charge is broadly distributed in 0 < x (cm) < 10, whereas
in (b) it is strongly confined to a thin layer in the top (with a thickness of the order of the Debye
length κ−1). The net negative charge resides at the bottom in both (a) and (b). This negative charge
pushes up the (negative) colloids to higher altitudes than expected on the basis of the barometric
distribution.
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that the electric field that is generated selfconsistently is of magnitude E = mg/(Ze) for large
Z . It follows from elementary electrostatics that the corresponding area a per net charge is
a/e = 4π/(εE), from which the area a follows as

a = 4π ZλB L . (18)

Inserting typical numbers, e.g. Z = 103, λB = 1 nm and L = 1 − 103 µm, yields an area
as large as a � 10 − 104 µm2. Such a large area, or such a low surface charge density, is a
direct manifestation of the relatively strong Coulomb force compared to gravity: it does not
take much charge to counteract the gravitational force.

5. Discussion

An important question is now whether, or to what extent, the regimes y > 1 and Z−1 < y < 1
are experimentally accessible, and to what extent a Donnan-like ideal-gas type analysis is
appropriate. In order to analyse these questions we rewrite y from equation (8) as

y = 24η
ZλB

σ

1

(κσ )2
. (19)

Here we used the previously introduced colloidal packing fractionη, the Bjerrum lengthλB, the
colloidal diameter σ , and the reservoir screening length κ−1. Typical colloidal parameters are
σ = 0.1–1µm, λB = 1–10 nm, and Z = 100–1000, and hence ZλB/σ � O(1). The regime of
physical (and detectable) packing fractions is, typically, η � 10−5–10−1, and κσ = 10−1–104

for salt concentrations ranging from the extremely low cs � 10−9 M (in organic solvents) to
the saturation value cs � 10 M (in water). These numbers imply that y > 1 is possible in the
low-salt regime κσ � 1, e.g. for κσ = 1 when η > 0.05, or for κσ = 0.1 when η > 0.0005.
Moreover, and perhaps more interestingly, the regime y > 1/Z is much more easily accessible,
e.g. for Z = 1000 even at κσ = 10 when η > 0.005.

The question whether or not the colloid–colloid interactions can be ignored, as we
do here, can be estimated by a calculation of the osmotic second virial coefficient B2 =
(1/2)

∫
dr (1 − exp(−v(r)/kT )), where v(r) is the effective colloidal pair interaction. If one

assumes that this potential is given by the DLVO-like screened-Coulomb form [13]

v(r) =



∞, r < σ ;
Z 2e2

ε

exp(κσ )

(1 + κσ/2)2
exp(−κr)

r
, r > σ ,

(20)

one straightforwardly calculates B2 numerically. A rough estimate of the crossover density
from the ideal-gas to the interacting regime is then given by B2ρ = 1.

In figure 5 we present a log–log plot of the curve B2ρ = 1 in the (η, cs) plane, together the
lines y = 1/Z and 1. Given the large number of decades displayed, one can view B2ρ = 1 as
a rough estimate of the freezing line; in the high-salt (hard-sphere) limit this yields η = 0.25, a
mere factor two from the well-known actual hard-sphere freezing transition. The parameters in
figure 5(a) are λB = 2.3 nm, σ = 150 nm, and Z = 100, all closely related to the experiments
of [10]. The parameters in figure 5(b) are λB = 7.2 nm, σ = 2.16 µm, and Z = 2300, which
correspond to another experimental system that is presently investigated [14]. In both cases,
and actually in all other cases that we studied, the regime y > 1 is completely masked by
B2ρ > 1. This implies that a realistic study of this regime must take into account the effective
colloidal interactions. By contrast, in both (a) and (b) as well as in all other cases that we
studied we find that the intermediate density regime 1/Z < y < 1, i.e. the regime where
we predict macroscopic electric fields in sedimentation equilibrium, has a substantial part in
the ideal-gas-like regime B2ρ < 1. This observation indicates that the presently used ideal-
gas approach is sufficiently accurate to realistically describe the selfconsistent macroscopic
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Figure 5. Separation of (η, cs) plane into the low-density regime y < Z−1, the low-salt regime
y > 1, and the weak-interaction regime B2ρ < 1, where η is the colloidal packing fraction, cs the
reservoir salt concentration, Z the colloidal charge number, and y the dimensionless colloid density
defined in equation (8). Parameters are (a) Z = 100, λB = 2.3 nm, and σ = 150 nm similar to the
experiments in [10], and (b) Z = 2300, λB = 7.2 nm, and σ = 2160 nm as in experiments of [14].
Note that the low-salt regime y > 1 is in the strong-interaction regime in both (a) and (b).

electric field that pushes up the colloids to relatively large heights compared to the barometric
distribution. In other words, we conclude that the macroscopic electric field predicted here
and in [7–9] could well be a real phenomenon, and could be detectable experimentally [12].

We wish to end with a qualitative, rather handwaving thermodynamic explanation of
the electric field in sedimentation equilibrium. In a one-component fluid sedimentation
equilibrium is the result of the competition between gravity (favouring all particles at the
bottom) and entropy (favouring a homogeneous distribution),and the balance yields, for a dilute
system, the exponential barometric distribution (2). In a mixture of (massive) charged colloids
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and (massless) cations and anions the situation is more complicated, and actually frustrated:
gravity favours the colloids at the bottom, but not the cations and anions, whereas electrostatics
favours local charge neutrality, while entropy favours a homogeneous distribution. At high salt
concentrations the entropic cost of satisfying local charge neutrality, even at the bottom where
most of the colloids prefer to be, is limited, since only a small fraction of the ions is needed
to compensate the colloidal charge, i.e. the ion fractionation is small and hence entropically
‘cheap’. By contrast, at low ion concentrations a large fraction of the ions,or almost all of them,
would be required to attain local charge neutrality at the bottom (where the colloids would be),
and the corresponding fractionation of the ions into a dense layer at the bottom and a dilute
one on top would be entropically ‘expensive’. In this low-salt limit the free energy balance
is therefore dominated by the ion entropy, and the free energy is optimised by sacrificing the
local charge neutrality to set up an electric field pushing up the colloids, and hence allowing
for a colloid and ion density distribution that is much more homogeneous than predicted by
the barometric law.

This entropic lift effect is a genuine many-body effect, that seems to be difficult to catch
within an effective one-component description of the suspension. Such a description is based
on an effective Hamiltonian H for N charged colloids at positions Ri (with i = 1, . . . , N)
in osmotic contact with a salt reservoir. In the presence of an external potential (such as the
gravitational potential of interest here) H can be shown to take the general form [15]

H =
N∑

i=1

v1(Ri) +
N∑

i< j

v2(Ri ,R j ) +
N∑

i< j<k

v3(Ri ,R j ,Rk) + · · · , (21)

where vn is the n-body potential, defined in the n-colloid system and hence independent
of the colloid density [15]. Since y = Z(n/V )/(2cs) � 1/Z for any microscopic n and
macroscopic volume V , the potentials are all defined in the low-density (Van’t Hoff) regime as
long as n � 2csV/Z 2. In other words, no entropic lift effect in the Earth’s gravity field will be
predicted for any reasonable truncation of the expansion of equation (21). One might speculate
that an effective one-component Hamiltonian of the form (21) can neither deal properly with
other inhomogeneities in suspensions of charged colloids, e.g. interfaces of coexisting phases
or wetting films, since the possibility of local charge separation is an intrinsically multi-
component feature. Rather one should then consider such inhomogeneities directly at the
level of density profiles and the free energy instead of the effective Hamiltonian. We plan to
investigate this in more detail in future work.
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